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Control of a two-link rigid}#exible manipulator carrying a moving payload mass is
considered. The stability of the system when the payload mass is moving along the #exible
link during the time of maneuver is investigated. A candidate Lyapunov function is
constructed and its time rate of change is examined. It is shown that the use of an
independent PD-type controller yields a convergence of residual vibration to zero, an
attainment of the rigid-body rotations to their prespeci"ed desired angles of maneuver, and
an axial guidance of the payload mass. It is shown that allowing the relative motion of the
payload mass, as it moves along the #exible link, leads to a considerable reduction of its
residual vibrations as compared with the case when it is "xed to the link tip during the time
of maneuver. The performance of the proposed controller is also veri"ed in case the links
and the payload mass are required to track prespeci"ed reference trajectories.

( 2001 Academic Press
1. INTRODUCTION

In industry, certain robot manipulations consist of moving objects from one location to
another with high accuracy. It is known that high-speed maneuvers are often required for
raising line production. However, large rotational speeds induce #exural vibration of
lightweight links due to inertial e!ects; and thus, the positional accuracy may not be
guaranteed in the presence of vibrations. To overcome this, stabilizing controllers are
typically applied at the joints for two reasons: to position the links to their desired locations,
and to reduce the residual vibration at and after the maneuver time [1, 2].

There has been extensive research on control of #exible manipulators, (see e.g., references
[3}5]). Most of the control strategies proposed in the literature are model based. In other
words, the controller gains are obtained based on a model and its nominal parameters. The
main drawback of all model-based controllers is that one never has an exact model.
Therefore, the robustness to parameter uncertainties has been a major concern in control
design for manipulators, which leads to various robust-control applications [6}8]. Another
di$culty with the #exible systems is the so-called &&spillover'' problem. Since the actual
system is a distributed parameter system, any controller design based on "nite dimensional
models will generally su!er from the control and observation spillovers: The control action
will also a!ect the neglected higher modes, and the measurements will also contain the e!ect
0022-460X/01/250883#15 $35.00/0 ( 2001 Academic Press
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of higher modes [9]. To address both robustness and spillover problem, non-model based
controllers which are derived by using Lyapunov techniques have been developed [10}12].
Yigit [2] has employed proper Lyapunov functions to conclude that independent PD joint
controllers stabilize the overall dynamics of a two-link rigid}#exible manipulator. These
functions do not require any discretization of the distributed system, and yield a control law
which does not su!er from any control or observation spillover. The control law is generally
chosen to make the rate of change of a candidate Lyapunov function negative. Experimental
work verifying the e$cacy of joint controllers has appeared in references [13, 14].

In common practice, robot manipulators retain the object or payload mass "xed at the
tip of the end-link during maneuver. Therefore, controllers are designed based on a "xed
payload mass. Clearly, not all applications require a "xed payload. Thus some valid
questions can be posed: (1) If the payload mass is guaranteed to be at the tip of the end-link
at the end of the maneuver time, can it be allowed to move during maneuver along the link
in a prescribed manner? (2) Can this motion be utilized to reduce the residual vibration in
the link more rapidly? To the best of the authors' knowledge, current commercial robotic
manipulators do not have relative motion of payload mass with respect to the end link.
However, some modern machining systems have loading systems with moving payload
mass. It is also common to see moving payload mass in cranes. Clearly, this additional
motion allows the use of more complex trajectories and increases the speed of maneuver.
The results of the current study shows that the relative payload motion can improve the
dynamic behavior signi"cantly, and allow faster maneuver.

Though the bene"cial e!ect of a moving payload was shown on a single-link arm in
reference [15], as is well known, a single-link case does not have su$cient kinematic
complexity to generalize the results for practical multi-link manipulators. The kinematic
non-linearities introduced by the additional link, as well as dynamic non-linearities such as
centrifugal and coriolis e!ects due to the moving payload mass complicates the dynamic
behavior. Thus, the objective of the current study is to investigate the e!ects of payload
relative motion in a two-link rigid}#exible manipulator, and to design e$cient controllers
which exploit this e!ect.

The remainder of this paper is organized as follows. Section 2 is devoted to mathematical
modelling for the two-link rigid}#exible manipulator. Section 3 studies the stability of the
resulting dynamics under the e!ect PD type controllers. Section 4 contains the simulation
results and discussion of the e!ect of the payload dynamics on the residual vibration of the
#exible link. In section 5 the controller is generalized for tracking reference trajectories, and
contains simulation results showing the performance of proposed controller. Finally,
summary and conclusions are given in section 6.

2. DYNAMIC MODELLING

Consider the horizontal-planar motion of a two-link rigid}#exible manipulator shown in
Figure 1, where the rigid link is assumed to be uniform. The #exible link is clamped to the
rigid base and is assumed to be thin and uniform, and satis"es the Euler}Bernoulli beam
assumptions of small shear and rotary inertia e!ects. The payload mass is allowed to move
without friction relative to the #exible link with a force actuator. Depending on the amount
of #exibility and the power requirement, di!erent actuators can be employed for this
purpose. For example, for heavy duty applications a ball screw arrangement may be
suitable whereas for lightweight payloads and more #exible links a transmission belt or
cable system along with guide rails may be more feasible. In addition to the force actuator,
two torque actuators are placed at the rigid bases for controlling the rotations of the links.



Figure 1. Two-link rigid*#exible manipulator.
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reduce to
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where the dot and prime signs associated with v
m

denote L./Lt and L./Lx
m
, respectively, and
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The total kinetic energy of the two-link manipulator can be written as
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where o
1

and o
2

are the densities of the link materials respectively. A
1

and A
2

are
cross-sectional areas of the rigid link and #exible link, respectively, I
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and I
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are the mass

moments of inertia of the rigid bases respectively. The strain energy resulting from the link
#exural vibration is given by

;"

1

2 P
l2

0

EI(vA)2 dx
2
, (5)

where EI is the beam #exural rigidity and the prime sign associated with v denotes L./Lx
2
.

The extended Hamilton's principle can be applied for deriving the equations of motion,
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where the virtual work done by the external forces is given by
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where uh1 , and uh2 are the joint torques and u
xm

is the control force applied to the payload.
Substituting equations (4), (5) and (7) into equation (6), integrating by parts, and simplifying
the resulting equation lead to the following non-linear coupled equations of motion and the
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associated boundary conditions:
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The above equations describe the vibration of the #exible link, the rigid body rotations, and
the axial displacement of the payload mass relative to the #exible link denoted by v, h

1
, h

2
and x

m
, respectively.

3. STABILITY DUE TO PD-TYPE CONTROLLERS

The control torques and force are proposed to be in the form
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where h
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and h
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are the maneuver angles, x
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is the desired value of the payload axial
displacement. The gains are assumed to be positive. In case that the positions are measured,
this control is essentially a proportional plus derivative feedback (PD) controller. If both
positions and velocities are measured, then it can be considered as an output feedback. It
can be seen that the above control can be easily implemented by using traditional sensors
commonly used in robotics. The rotations of the links can be measured by encoders. The
relative motion of the payload mass can be measured by a linear variable displacement
transducer (LVDT). An indirect measurement may also be feasible through the use of an
accelerometer, though this requires the measurement of the link de#ection.

One way to prove stability is to select a candidate Lyapunov function and examine its
time rate of change. Following the work of Yigit [2], let this function be of the form
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In order to achieve a global minimum of < at the desired state the last three terms in the
above equation are added. It can be noted that the above function is positive, and is zero at
the desired equilibrium. Di!erentiating < with respect to time and simplifying the resulting
equation yield
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Substituting equations (13}15) in <Q (t) gives
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desired ones. In order to show the asymptotic stability, LaSalle's Theorem is employed [16].
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Since <(t),0 implies that hQ
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shown that the only solution of the system given by equations (19}23) satisfying <Q ,0 is
the null solution (desired states). Therefore, the controlled system is asymptotically stable
[16].

At this stage, it should be observed that the proposed controller does not require any
state estimation since all quantities used to determine the control forces can be easily
measured. Since no discretization of the #exural motion is needed, there is no spillover
problem. Furthermore, this control has the stability robustness to parameter uncertainties
since the gains are not computed by using the parameters of the system. For all physically
reasonable values of the parameters of the system, < remains to be a valid Lyapunov
function.

4. SIMULATION RESULTS

Adopting the Galerkin approach for the discretization of the above equations of motion,
let
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where N is the number of modes that are su$cient to approximate the vibratory motion of
the #exible link, /

i
's are comparison functions which satisfy the boundary conditions, and

q
i
's are the modal amplitudes of vibration. Let the assumed modes be those of

a non-rotating cantilever beam, i.e.,
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Substituting equation (25) into equations (8}11) and writing the resulting equations in the
matrix form yield
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where the superscript T denotes the matrix transpose, and the elements of the mass matrix
M and the non-linear vector h are given in the appendix.
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number of modes to be taken depends on the excitations (i.e., input torques and forces). It
has been veri"ed through numerical simulations that a three-mode approximation is
su$cient to model the vibratory motion of the #exible link for the maneuvers considered.
The frequencies of the "rst three modes are 15)15, 94)94 and 265)87 rad/s respectively. The
feedback gains are selected on the basis that the damping ratio associated with the
rigid-body motion is approximately 0)707.

First, let the payload mass be "xed at the tip of the #exible link, and the control action for
the axial motion is turned o! (K

P3
"0, K

D3
"0). Figures 2(a}d) display the angular

displacements h
1

and h
2
, the tip de#ection v (l

2
, t), the payload de#ection v

m
(x

m
, t), and the

torque inputs uh1 and uh2 . Note that since the payload mass is kept at the tip,
v(l

2
, t)"v

m
(x

m
, t) at all times. As expected, the controller is able to control the motion and

suppresses the vibrations induced by the maneuver. However, there is a large elastic
de#ection in the beginning of the maneuver. Thus, the payload is subjected to large
accelerations during this time. Clearly, by reducing the controller gains, this large
acceleration can be avoided at the expense of slowing down the system response.

Next, let the payload mass be initially at x
2
"0, and is allowed to move under the control

action. The resulting performance is shown in Figures 3(a}f ) from which the following
observations can be made.



Figure 2. Performance of the manipulator with no relative motion of the payload mass;*, shoulder joint; - - -,
elbow joint.
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1. The axial motion of the payload mass alters the dynamics of the rigid body motions,
causing more oscillatory angular displacements. This can be justi"ed by the existence
of the Coriolis accelerations which include the terms mhQ xR

m
and mhQ vR

m
(see equations

(8, 9)).
2. It introduces additional damping to the link vibratory motion through the

acceleration term 2kxR
m
v@
m

in equation (11).
3. The vibratory motion of the payload mass is reduced considerably, due to the fact that

it starts in a region near the rigid base which experiences less vibrational amplitudes.
This is an advantage in the sense that the axial motion o!ers a solution to slewing
#exible structures, such as maneuverable space structures, which carry humans or
sensitive objects.

4. The maximum values of the torque inputs are not a!ected signi"cantly by the axial
motion of the payload mass. This constitutes an advantage in the sense that the axial
motion of the payload mass introduces more structural damping while maintaining
the same maximum torque input requirement.

Developed above are driving torques and regulating force for the motion control of the
manipulator. Although, the desired "nal state can be achieved, the trajectories undertaken
by the rigid-body rotations and the payload axial motion during maneuver cannot be fully
controlled. This suggests that the torques and force be modi"ed for tracking reference
trajectories.



Figure 3. Performance of the manipulator with relative motion of the payload mass; key as in Figure 2.
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5. STABILITY FOR TRACKING REFERENCE TRAJECTORIES

Suppose it is preferred that the rigid-body rotations and the payload axial motion track
a prespeci"ed set of reference trajectories denoted by h

1r
, h

2r
, and x

mr
. In addition, the

vibratory motion can also be assigned a zero-reference trajectory. In this case, the torques
applied at the rigid bases are modi"ed as

uh1"uh1r!K
P1

(h
1
!h

1r
)!K

D1
(hQ

1
!hQ

1r
),

uh2"uh2r!K
P2

(h
2
!h

2r
)!K

D2
(hQ

2
!hQ

2r
),

u
xm
"u

xmr
!K

P3
(x

m
!x

mr
)!K

D3
(xR

m
!xR

mr
), (28)
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where uh1r , uh2r and u
xmr

are the feedforward control inputs. The reference trajectories h
1r

, h
2r

and x
mr

are determined using inverse kinematics or inverse dynamics algorithms [17, 18].
For instance, these trajectories are determined from specifying a reference path of the
payload mass. The resulting reference trajectories can be used to determine the required
feedforward control inputs as
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In order to verify the stability of the manipulator with reference trajectories, one may use
the Lyapunov stability method. A candidate Lyapunov function similar to the one used
earlier can be constructed. However, it was di$cult to show that the time rate of change of
< is negative semi-de"nite. The complexity occurred because of the dependence of the
reference trajectory on time. Stability can also be proven if the equations of motion are
linearized about the desired state [2] by Lyapunov's indirect method. However, the issue of
asymptotic stability for the case of tracking an arbitrary trajectory is not pursued further in
the current work. It should be noted that the modi"ed control law given in equation (28) is
now a model-based controller and su!ers from the shortcomings mentioned in the
introduction. Thus, stability robustness to parameter uncertainties must be accounted for in
the design process through the feedback gains.

Several simulations were performed to examine the performance of the system for
reference trajectories. For instance, let

h
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Figures 4(a}f ) show the resulting performance for t
f1
"t

f2
~"2 s, t

f3
"3)5 s, K

P3
"3)2643,

and K
D3
"0)2332. As can be seen, the tracking performance is very good with respect to



Figure 4. Performance of the manipulator with reference trajectories; key as in Figure 2.
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link rotations. Tip de#ection is reduced signi"cantly due to the smooth nature of reference
trajectories, and overall maneuver time is very close to that of the previous case. More
importantly, the control torque and force magnitudes are an order of magnitude lower than
the set point controller presented in section 4.

6. SUMMARY AND CONCLUSIONS

A mathematical model of a two-link rigid}#exible manipulator carrying a moving
payload mass was derived. Two joint motor torques were applied at the rigid hubs for the
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motion control of both links, in addition to a force actuator which controls the payload
relative motion. With the aid of a candidate Lyapunov function, it was shown that the use of
the proposed PD-type controller stabilizes the system maneuvering dynamics in which the
payload is allowed to move relative to the #exible link in the axial direction. These torques
yield a convergence of residual vibration to zero, an attainment of the rigid-body rotations
to their prespeci"ed desired angles of maneuver, and an axial guidance of the payload mass
to the desired location along the #exible link. It was shown that allowing the relative motion
of the payload mass in a prescribed manner leads to a considerable reduction of its residual
vibration as compared with the case when it is "xed to the link tip during the time of
maneuver. Stability was also veri"ed through numerical simulation in case the rigid-body
motions track prespeci"ed reference trajectories. It is believed that the results of this study
can be extended to #exible multi-link manipulators, and thus, can be of great importance for
slewing space structures where the transported object is sensitive to vibrations.

Future work should focus on implementation issues and experimental realization of the
proposed manipulator. Clearly, there will be some design challenges for realizing the
relative payload motion on a #exible link. Depending on the drive system used, there will be
limitations on the allowable de#ections of the #exible link. It should be noted, however, that
with the payload motion, the #exible link is shown to experience much smaller de#ections.
Therefore, this problem may not be as severe as it seems. The inevitable friction between the
payload and the link, which is neglected in the current work, should be considered. It may
be necessary to compensate this non-linearity through feedback. The e!ects of sensor noise
and actuator saturation should also be examined.
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